Potent blockade of sodium channels and protection of brain tissue from ischemia by BIII 890 CL.
نویسندگان
چکیده
We have synthesized a new benzomorphan derivative, 2R-[2alpha,3(S*), 6alpha]-1,2,3,4,5,6-hexahydro-6,11, 11-trimethyl-3-[2-(phenylmethoxy)propyl]-2, 6-methano-3-benzazocin-10-ol hydrochloride (BIII 890 CL), which displaced [(3)H]batrachotoxinin A-20alpha-benzoate from neurotoxin receptor site 2 of the Na(+) channel in rat brain synaptosomes (IC(50) = 49 nM), but exhibited only low affinity for 65 other receptors and ion channels. BIII 890 CL inhibited Na(+) channels in cells transfected with type IIA Na(+) channel alpha subunits and shifted steady-state inactivation curves to more negative potentials. The IC(50) value for the inactivated Na(+) channel was much lower (77 nM) than for Na(+) channels in the resting state (18 microM). Point mutations F1764A and Y1771A in transmembrane segment S6 in domain IV of the alpha subunit reduced the voltage- and frequency-dependent block, findings which suggest that BIII 890 CL binds to the local anesthetic receptor site in the pore. BIII 890 CL inhibited veratridine-induced glutamate release in brain slices, as well as glutamate release and neurotoxicity in cultured cortical neurons. BIII 890 CL (3-30 mg/kg s.c.) reduced lesion size in mice and rats when administered 5 min after permanent focal cerebral ischemia at doses that did not impair motor coordination. In contrast to many other agents, BIII 890 CL was neuroprotective in both cortical and subcortical regions of the rat brain. Our results demonstrate that BIII 890 CL is a potent, selective, and highly use-dependent Na(+) channel blocker that protects brain tissue from the deleterious effects of focal cerebral ischemia in rodents.
منابع مشابه
Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...
متن کاملN-methyl-D-aspartate receptor channel block by the enantiomeric 6,7-benzomorphans BIII 277 CL and BIII 281 CL.
BIII 277 CL ((-)-2R-[2 alpha, 3(R*),6 alpha]-3-(2-methoxypropyl)-6,11, 11-trimethyl-2,6-methano-1,2,3,4,5,6-hexahydro-3-benzazocin-9-ol hydrochloride) is a novel benzomorphan with neuroprotective and anticonvulsant properties that exhibits high affinity binding to the N-methyl-D-aspartate (NMDA) receptor but, in contrast to other structurally related benzomorphans, low affinity for mu opiate an...
متن کاملATP-dependent potassium channels are implicated in simvastatin pretreatment-induced inhibition of apoptotic cell death after renal ischemia/reperfusion injury
Background: Simvastatin is a widely used medication in cardiac care. Here we evaluate the role of ATP sensitive potassium (KATP) channels in simvastatin induced renal protection after renal ischemia/reperfusion (I/R) injury. Methods: A total of 81 male Wistar rats, were treated with simvastatin (10 and 20mg/kg/day gavage, one week). Some groups received glibenclami...
متن کاملEffect of Endothelin-A Receptor Blockade on the Early Phase of Ischemia/Reperfusion-Induced Acute Renal Failure in Anesthetized Rats
Background: Previous studies have shown increases in endothelin (ET) concentration of plasma and renal tissues in acute renal failure (ARF). ET has a potent vasoconstrictor effect, through binding with its ETA receptors, and may play some roles in renal hemodynamic dysfunction in ARF.Objective: To examine the beneficial effect of a selective ETA-receptor antagonist on renal dysfunction and tis...
متن کاملCurcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 9 شماره
صفحات -
تاریخ انتشار 2000